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It is shown that Maxwell's equations when there exist isolated magnetic 
charges are invariant under conformal transformations. 

A number of equations in physics seem to be Jnvariant not only under 
Poincar6 transformations but also under conformal transformations. Con- 
formal invariance was introduced into physics by Cunningham (1909) and 
Bateman (1909) shortly after Einstein's first paper on special relativity; they 
showed that Maxwell's equations are invariant in form under the 15-param- 
eter conformal group, which has the 10-parameter Poincar6 group as a 
subgroup. Only equations describing massless particles are conformal in- 
variant unless we transform masses in a conformally covafiant way (Schouten 
and Haantjes, 1940). The role of conformal invariance in field theory has 
been investigated by several people (Wess, 1960; Mack and Salam, 1969). 

In recent years Dirac's hypothesis (Dirac, 1931 ; 1949) of the existence of 
isolated magnetic charge--the Dirac monopole--has stimulated extensive 
theoretical studies (Strazhev and Tomil'chik, 1973). Also, several attempts 
were made to detect such a charge experimentally (Strazhev and Tomil'chik, 
1973). It was announced recently that Dirac's monopole was found experi- 
mentally (Price et al., 1975), but the interpretation as a monopole of what 
was seen in the experiment was not met without objections (Fleischer and 
Walker, 1975). The existence of magnetic charge gives Maxwell's equations a 
symmetric form between electric and magnetic quantities. Also, it provides a 
nice explanation of the quantization of the electric charge. There are no 
theoretical reasons which exclude the existence of the magnetic charge, and 
therefore several consequences of its existence have been examined. 
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In the present paper we shall show that Maxwell's equations with mag- 
netic charges are invariant in form under conformal transformations. This is 
something that we expected since the photon remains massless. Our proof is 
relatively simple, self-contained, and independent of the form of Maxwell's 
equations in the Riemannian space-time of general relativity. Of course the 
proof of invariance includes as a special case the case of absence of magnetic 
charges. 

Let x", /z = 0, 1 , . . . ,  3 be the components of a point in a flat space- 
time, and let us consider the point transformations (active transforma- 
tions) 

x'" = x'"(x ~ x 1 . . . .  , x 3) (1.1) 

which determine the components of the point x'" in a coordinate system, 
when the components of the point x" are known in the same coordinate 
system. If  the line elements ds(x ' )  and ds(x) at the points x' and x are con- 
nected by the relation 

~X' I l l~  ds(x') = ~ ds(x) (1.2) 

where IIcox'/axll is the absolute value of the Jacobian determinant of (1.1), 
the transformations (1.1) are called conformal transformations. It is 
obvious from equation (1.2) that the metric tensor g,v does not behave under 
conformal transformations as a true tensor, but it behaves as a tensor density 

' I[ax'l~l~ cox~ cox ~ 
g,v = II - ~  . ax'" COx 'v go,  (1.3) 

The transformation law of the tensor g,V, which is defined by the relation 
g" '&p = 8a", is easily obtained from equation (1.3). 

It has been shown that a set of fields ~F(x) which belong to a linear 
representation of the inhomogeneous Lorentz group behave under conformal 
transformations as (Isham et al., 1970) 

COX' ~l~ cOX' - l l~ t  8X'" . . 

where D(A,") is the Lorentz transformation matrix of the field W(x) and l* is a 
Lorentz scalar called conformal weight of the field ~F(x). For example, 

Ox' c '~-1~14 cox'" B~(x ) (1.5) 
B'.(x') = - ~  ax ~ 

Also, the operators 0, = O/Ox" and 0" = g"~O~ transform as follows: 

, O x  v 

a. = o - ~  a,, (1.6) 
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II Ox' 112 Ox'" O~ 
(1.7) 

In the absence of magnetic charges the electromagnetic interactions are 
introduced by the minimal substitution 0" ~ 0" - ieA"(x), where A"(x)  is the 
e!ectromagnetic four-vector potential. From equations (1.5) and (1.7) we see 
that in order to achieve invariance of the action we have to take/,1 = _ 1. 
This choice combined with equation (1.7) implies tliat in the absence of 
magnetic charges the electromagnetic field strength f " v ( x ) =  O"AV(x) -  
O~A"(x) transforms as a second-rank tensor density of conformal weight 
17 = - 2 .  An invariant action integral must have zero conformal weight, 
which implies that the Lagrangian density ~ must have l -~ = - 4 .  Then the 
interaction Lagrangian density ~ n t  = eA,(x)J"(x) ,  where Y"(x) is the electro- 
magnetic current in the absence of magnetic charges, implies that the current 
density J"(x) has conformal weight H = - 3. 

Maxwell's equations in the presence of magnetic charges take the form 

Ouf"~(f) = Y ' (x)  (1.8) 

O*f"'(x)  = *Y~(x) (1.9) 

where 

*f.~(x) = �89176  (1.1o) 

fDr is the electromagnetic field strength (which now cannot be written in 
the form 3pA~ - GA~), Jr(x),  *J~(x) are the electric and magnetic currents, 
respectively, and ~,vD~ is the totally antisymmetric Levi-Civita symbol. 

Conformal invariance of Maxwell's equations means that if we express 
them in the coordinates x '~, which satisfy equations (1.1) and (1.2), they get 
the same form, i.e., 

e'.f'U~(x ') = Y'~(x') (1.11) 

G*f '" ' (x ' )  = *J~(x') (1.12) 

where 

] Ox']j-~ ax'. ax'~ 
f ' # ' ( x ' )  = ~-~ Ox p Ox ~ fP~(x) 

~X'  - ~ OX 'u OX "v 
*f'"V(x') = "-~ Ox p Ox ~ *ff~(x) 

Ox'll-1 ax'~ g'v(x') = g-d - ~  J~ 

OX' - I OX'V 
*J',(x') = g'd -U~ *J'(x) 

(1.13) 

(1.14) 

(1.15) 

(1.16) 
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Equations (1.13) and (1.15) indicate that the quantities f "V(x )  and JV(x) 
transform under conformal transformations as second-rank tensor and as 
vector, respectively, of conformal weights F = - 2  and l J = - 3 ,  as in the 
case of an absence of magnetic charges. This should be the case because the 
presence of magnetic charges should not affect the transformation properties 
o f f  "~ and J~. The magnetic current should transform like the electric current 
except that in the transformation formula the Jacobian determinant will 
appear and not its absolute value. This current is an axial vector and it should 
transform as in equation (1.16). The expression (1.14) can be derived from 
equations (1.10) and (1.13). Indeed, using equation (1.3) we get 

= g , o ( x ) g , , ( x ) f  ( x )  = Ox"-----" ~ x  '~ j j ' ,  (1.17) f~,~(x') . . . . .  ,,,, , ~x  ~ Ox" _ 

Using the relation 

I Ox'1-1 3x'" Ox 'v ax  'o Ox"  ~ , ,  = , ~ p ,  
e'u~Pa = ~ -  OX a OX* 3X 'c 3X ------ff 

(1.18) 

we get from equations (1.10), (1.17), and (1.18) 

lax ' -1  ~X'U OX'V 
* f ' " ' ( x ' )  = �89176 = ~ ax--- T Ox--- 7 * fa ' (x )  (1.19) 

which is identical to equation (1.14). The above equation indicates that the 
expression *fUr(x) transforms as pseudotensor density, as expected from its 
definition. 

To prove equation (1.12) we need the relation 

~x'  -1  Oa Ox' 02x"~ Ox~ (1.20) 
-ff~ = OxaOx ~ Ox',~ 

Indeed, using equations (1.6), (1.9), (1.14), (1.16), (1.20), and the antisym- 
metry of the tensorfP~(x), we get 

I I I (I ) ",,,",uv, ,, ~X' -1[ OX ~ 8X' - ~ cqX ~X 'u cqX 'v 
o , , J  t x  ) = -~x [ - - ~  - ~  O ~ Ox ~ ax" f ~  

OX a cq=x'" cqx" a2x '' ~x" cqjo,,(x)] 
+ ax,---- ~ axaax~ ax  ~ fo'~(x) + ~ fO~ + ~ = @JtV(Xt ) 

J 
(1.21) 

which is equation (1.12). The proof of equation (1.11) proceeds in exactly the 
same way, since equation (1.20) also holds if we replace the determinant by its 
absolute value. Therefore Maxwell's equations in the presence of magnetic 
charges are invariant under conformal transformations. 

From equations (1.13) and (1.14) we easily find that the expressions 
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f'"V(x') and *f'"V(x') are antisymmetric in the indices tz and v. Therefore from 
equations (1.11) and (1.12) we obtain 

t t y  t ~ t  ~ r  I x  avs (x ) = o (1.22) = ova  (X) 

which means that conformal transformations do not affect the conservation 
laws of the electric and the magnetic charges. 

The transformation properties of the electric current and the magnetic 
current under conformal transformations, i.e., equations (1.15) and (1.16), 
were introduced independently of one another. It is possible, however, to 
show that these laws are not independent, but that they are derived from the 
transformation of a single quantity. To understand this we write Maxwell's 
equations with magnetic charges in a manifest "dyality" invariant form (Han 
and Biedenharn, 1971). This is done by expressing the electromagnetic field 
tensor as a function of the antisymmetric second-rank Hertz tensor ~f~, 
which consists of the electric and the magnetic Hertz vectors. These vectors 
are called sometimes Hertz potentials. The source currents are expressed as 
four divergences of an antisymmetric second-rank tensor field 6 euv called the 
source tensor (Han and Biedenharn, 1971) or stream potential (Nisbet, 1955; 
Laporte and Uhlenbeck, 1931). The Hertz tensor ~"~ is given by 

i O ~'x 7r.u ~z 1 
~ . ~  = 0 Z~ - Z ~  

o 
~f~uv = __~(f~. (1.23) 

where rc is the electric Hertz vector and ~- the magnetic Hertz vector. It can 
be shown that the manifest dyality invariant form of Maxwell's equations is 
(Han and Biedenharn, 1971) 

Vq~ ~v = S e~v (1.24) 

The electric current jv is given by 

SV _ a~Sa~v (1.25) 

while the magnetic current *J~ is the "dyality" transform of the electric 
current, given by (Han and Biedenharn, 1971) 

�9 j r  = Ou,Sfu~ (1.26) 
where 

�9 ~ ,v  = {,,vo~Sfp, (1.27) 

Maxwell's equations (1.8) and (1.9) are easily obtained from equations (1.24)- 
(1.27) if we make the identification 

fuv = i--lo~.v (1.28) 
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It  is obvious from equations (1.25) and (1.26) that the transformation 
law under conformal transformations of  the electric and the magnetic currents 
are completely specified once the transformation law of the stream potential 
is given. We assume that 5 r transforms under conformal transformations as a 
second-rank tensor density of  conformal weight l s = - 2 ,  i.e., l i k e f  uv [equa- 
tion (1.13)]. Then proceeding as before we can show that the electric and the 
magnetic currents J~ and *J~, defined by equations (1.25) and (1.26), respec- 
tively, transform like those of  equations (1.15) and (1.16). 
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